Pierre Pora

Séance 5 – Régression linéaire multiple

Rappel des séances précédentes

- Régression linéaire simple : une façon de lier une variable à une autre
- Plein d'interprétations possibles
 - ► Meilleure approximation linéaire
 - Comparaisons deux à deux
 - Comparaisons de moyennes
 - Décomposition en composantes orthogonales

L'objet de la séance

- Est-il possible d'étendre cette idée à plusieurs variables?
- Quelles sont les interprétations que l'on peut conserver dans ce cas?
- Quel est le lien entre régression simple et régression multiple?

L'objet de la séance

- Encore une séance vraiment importante
- ► Et potentiellement assez dense
 - Si nécessaire on étendra sur la séance suivante
- Avec les résultats de la séance précédente + ceux-là, vous devez être capables d'interpréter sans difficulté les coefficients de n'importe quelle régression par les MCO
- En dehors évidemment de leur interprétation causale
- Mais vous saurez qui est comparé à qui

L'objet de la séance

- Comme la séance précédente, on s'abstrait complètement de la distinction entre les quantités estimées (relatives à la population) et leur estimation à partir d'un échantillon de taille finie
- On fait tout le temps comme si on travaillait dans la population entière et que cela ne posait aucune difficulté
- On verra comment intervient l'échantillonnage, et surtout comment quantifier l'incertitude la séance suivante

Toujours les mêmes données...

```
library(AER)

data("CPS1985")

CPS1985 <- data.table::data.table(CPS1985)</pre>
```

Le concept existe visiblement pour R

(Intercept) female education 0.2178312 -2.1240567 0.7512834

Le concept existe visiblement pour R

- R estime trois coefficients
- ► Mais que représentent-ils exactement?
- Comment sont-ils construits?
- Comment les interpréter?

Toujours la même idée

Il existe un unique vecteur β et une unique variable aléatoire réelle ϵ tels que :

$$ightharpoonup$$
 wage $= X'\beta + \epsilon$

$$lacksquare$$
 avec X v.a. de dimension 3, $X=(1 \ { t female} \ { t education})'$

Clarification du formalisme

Petit calcul matriciel :

$$X'\beta = \beta_1 + \beta_2 \mathtt{female} + \beta_3 \mathtt{education}$$

- lacksquare La première composante de $X\epsilon$ est... ϵ
- Les autres composantes de $X\epsilon$ sont les produits female ϵ et education ϵ
 - $lackbox{ On sait d\'ejà que } \mathbb{E}[\epsilon] = 0$
 - $lackbox{Donc }\mathbb{E}[X\epsilon]=0\Rightarrow\mathcal{C}(\mathtt{female},\epsilon)=0 \ \mathrm{et} \ \mathcal{C}(\mathtt{education},\epsilon)=0$

Une petite vérification s'impose

```
CPS1985 [.
        salaire_predit :=
          regression_multiple$coefficients[
            "(Intercept)"] +
          regression_multiple$coefficients[
            "female"] *
          female +
          regression_multiple$coefficients[
            "education" 1 *
          education
all.equal(
  as.numeric(regression_multiple$fitted.values),
  as.numeric(CPS1985$salaire predit))
```

Une petite vérification s'impose

```
CPS1985[,
          residu :=
          wage - salaire_predit]

all.equal(as.numeric(regression_multiple$residuals),
          as.numeric(CPS1985$residu))
```

[1] TRUE

Une petite vérification s'impose

```
all.equal(mean(CPS1985$residu),
          0)
[1] TRUE
all.equal(cov(CPS1985$residu,
              CPS1985$female),
          0)
[1] TRUE
all.equal(cov(CPS1985$residu,
              CPS1985$education),
          0)
```

[1] TRUE

Comment ça marche?

- Petit détour un petit peu plus mathématisé
- ightharpoonup Supposons qu'on a dispose d'un tel β
 - Par linéarité de l'espérance $\mathbb{E}[X\epsilon] = \mathbb{E}[X \text{wage}] \mathbb{E}[XX']\beta$
 - $\blacktriangleright \ \, \mathsf{Donc}\ \mathbb{E}[XX']\beta = \mathbb{E}[X\mathsf{wage}]$
 - Si $\mathbb{E}[XX']$ est inversible on est bons! $\beta = \mathbb{E}[XX']^{-1}\mathbb{E}[X]$ wage
- Si $\mathbb{E}[XX']$ est **inversible**, alors on peut montrer qu'un tel β et le résidu qui s'en déduisent conviennent

Une condition nécessaire

- Tout ça ne marche que sous la **condition d'inversibilité** de $\mathbb{E}[XX']$!
 - On parle parfois de **condition de rang** (c'est la même chose)
 - Qu'est-ce que ça veut dire en pratique?

Problème de colinéarité

- ▶ La condition d'inversibilité équivaut à dire que toutes les composantes de X sont linéairement indépendantes (au sens de l'algèbre linéaire!)
 - Equivaut aussi à l'inversibilité de la matrice de variance-covariance de (female education)'
 - Il n'y a pas de combinaison linéaire constante de female et education
 - Pas très compliqué à montrer à la main

```
CPS1985[,
    male := as.numeric(gender == "male")]
```

► Il y a bien une combinaison linéaire constante de male et female

```
all.equal(
  CPS1985$male + CPS1985$female,
  rep(1, times = nrow(CPS1985))
)
```

[1] TRUE

```
matrice_XXprime
```

```
[,1] [,2] [,3]
[1,] 1.0000000 0.4588015 0.5411985
[2,] 0.4588015 0.4588015 0.0000000
[3,] 0.5411985 0.0000000 0.5411985
```

- La première colonne (ligne) est simplement la somme des deux autres!
- Le déterminant est nul

[1] TRUE

- Deux façons a priori différentes d'approximer le salaire comme une fonction affine de male et female
 - Correspondent à deux vecteurs de coefficients différents!
 - Dans le premier cas (0 sal_moy_f sal_moy_m)'
 - ▶ Dans le second (sal_moy_f 0 sal_moy_m sal_moy_f)'

```
sal_moy_f <- mean(CPS1985[female == 1]$wage)</pre>
sal_moy_m \leftarrow mean(CPS1985[male == 1]$wage)
CPS1985[,
        c("salaire_predit_mf_1",
           "salaire_predit_mf_2") :=
          list(sal mov f * female +
                  sal mov m * male,
                sal moy f +
                  male * (sal moy m - sal moy f))]
```

► En fait la valeur prédite du salaire est exactement la même dans les deux cas!

[1] TRUE

On vérifie que ce sont bien deux constructions admissibles : conditon d'orthogonalité

```
male female <num> <num> 1: -7.843614e-17 -8.172067e-17
```

- La condition d'orthogonalité suffit toujours à définir le résidu
 - Et donc aussi la valeur prédite
 - Ce n'est pas là qu'est le problème
- ► Le sous-espace engendré par la v.a. constante, female et male est de dimension 2 et pas 3
 - On ne peut pas définir de façon unique 3 coefficients solutions du problème

Comment R gère-t-il le problème?

```
regression_mf <-
lm(wage ~ male + female,
    data = CPS1985)

regression_mf$coefficients</pre>
```

```
(Intercept) male female
7.878857 2.116056 NA
```

- Une valeur manquante qui permet de revenir à un problème dont la solution est unique
 - C'est une solution au problème
 - Plus généralement, il faut rajouter une contrainte linéaire sur les coefficients
 - ➤ Si l'intérêt porte sur les coefficients plutôt que sur les valeurs prédites, il est préférable de le gérer soi-même pour choisir le(s) coefficient(s) manquant(s) et avoir l'interprétation que l'on souhaite
 - Ou la contrainte pertinente

Une première interprétation

- Au vu de ce qu'on a dit, en revenant sur l'exemple de départ
 - $\widehat{\text{wage}} = X'\beta$ est le **projeté orthogona**l de wage sur le sous-espace engendré par les régresseurs
 - β correspond à l'écriture de wage comme combinaison linéaire des régresseurs, vus comme une base de ce sous-espace
 - La condition d'inversibilité de $\mathbb{E}[XX']$ dit seulement que le nombre de régresseurs doit être égal à la dimension de ce sous-espace
 - Remarque : cette base n'est pas nécessairement orthogonale, et a fortiori orthonormée!!
 - Ce n'est le cas que lorsque la corrélation entre variables indépendantes est nulle
- Interprétation qui peut paraître ésotérique mais est la plus générale

Une seconde interprétation

- Comme pour le cas de la régression simple, la structure préhilbertienne fournit une interprétation équivalente
- $\widehat{\text{wage}} = X'\beta \text{ est la façon d'approximer wage qui minimise la distance quadratique } \sqrt{\mathbb{E}[\epsilon^2]}$
 - Si on considère une façon alternative de construire l'approximation :
 - $\mathbb{E}[\tilde{\epsilon}^2] = \mathbb{E}[\{\epsilon + \tilde{\epsilon} \epsilon\}^2]$
 - $\qquad \qquad \mathsf{Donc} \ \mathbb{E}[\tilde{\epsilon}^2] = \mathbb{E}[\epsilon^2] + \mathbb{E}[\{\tilde{\epsilon} \epsilon\}^2] + 2\mathbb{E}[\epsilon\{\tilde{\epsilon} \epsilon\}]$
 - Mais $\tilde{\epsilon} \epsilon$ est linéaire en X donc le dernier terme est nul
 - In fine $\mathbb{E}[\tilde{\epsilon}^2] = \mathbb{E}[\epsilon^2] + \mathbb{E}[\{\tilde{\epsilon} \epsilon\}^2] \ge \mathbb{E}[\epsilon^2]$

Une conséquence

- Comme pour la régression linéaire, cela fournit déjà une comparaison avec l'espérance conditionnelle $\mathbb{E}[\text{wage} \mid X]$
- lacktriangle wage est la meilleure approximation de wage qui s'écrive comme une forme linéaire de X
- ▶ $\mathbb{E}[\text{wage} \mid X]$ est la meilleure approximation de wage qui s'écrive comme une fonction (mesurable, pas forcément linéaire) de X
- Ici on a bien "meilleure" dans le même sens!
 - Distance en norme quadratique ou projection orthogonale (c'est équivalent)

Une conséquence

- Comme on parle de "meilleure" dans le même sens
- ▶ Et comme les formes linéaires sont des fonctions parmi d'autres
- lackbox Dans le "meilleur" des cas $\widehat{\mathrm{wage}} = \mathbb{E}[\mathrm{wage} \mid X]$
- ► Et la régression linéaire ne dépend que de l'espérance conditionnelle
 - Découle du fait que c'est pareil de projeter orthogonalement wage sur le sous-espace des fonctions mesurables de X, puis de projeter le projeté sur le sous-espace des formes linéaires de X qui est inclus dans le second
 - On pouvait déjà voir ça simplement en voyant que ça ne dépend que de $\mathbb{E}[X \text{wage}]$

Conclusion partielle

- Ce dont on dispose à ce stade
 - Une définition du problème
 - Une solution qui demande (en gros) de savoir inverser une matrice pour calculer les coefficients
 - Deux interprétation géométriques : wage comme "bonne" approximation de wage par une combinaison linéaire de régresseurs
- La suite :
 - Construire des interprétation plus simples des coefficients
 - Qui marchent dans certains cas
 - Regarder une façon pratique de construire les coefficients en partant d'une régression simple

Un cas trivial (mais important)

Comment gérer un régresseur qui est une variable qualitative?
 Par exemple le secteur sector

table(CPS1985\$sector)

manufacturing	construction	other
99	24	411

Un cas trivial (mais important)

- On définit une variable indicatrice pour chaque niveau possible de la variable qualitative
- Quelle difficulté cela pose-t-il?

Un cas trivial (mais important)

- Problème de colinéarité
 - ▶ Il faut omettre un niveau
 - ou bien la constante
- Les valeurs prédites s'identifient à l'espérance conditionnelle
- Les coefficients se lisent comme les différences entre le le salaire moyen du secteur concerné et le secteur omis
 - Et l'intercept est le salaire de ce secteur omis
- Ou bien simplement les salaires moyens si c'est la constante qu'on a omise
- On parle de régression saturée

Une petite vérification (toujours)

```
(Intercept) sectorconstruction sectorother [1,] 9.604444 -0.3836111 -0.7316707
```

Une petite vérification (toujours)

```
sal_moy <- CPS1985[,
                   list(sal moy = mean(wage)),
                   by = c("sector")]
ecarts movens <-
  sal moy[,
          lapply(X = levels(CPS1985$sector),
                 FUN = function(sect)
                   sum(sal mov *
                          (as.numeric(sector ==
                                        sect) -
                             as.numeric(
                               sector ==
                                 "manufacturing"))))]
```

Une petite vérification (toujours)

```
all.equal(
  as.numeric(regression_sect$coefficients[
    names(regression_sect$coefficients) !=
    "(Intercept)"]),
  as.numeric(ecarts_moyens)[2:3])
```

Une remarque rapide sur la régression saturée

- ► Elle n'apparaît pas toujours explicitement sous la forme d'une variable qualitative avec tous ses niveaux
- On peut aussi utiliser des interactions
 - Les coefficients se lisent comme des différences entre différences etc. (selon le niveau de l'interaction)

```
CPS1985[,
        c("college",
          "female"):=
          list(as.numeric(education>=16),
               as.numeric(gender=="female"))]
reg interact<-
  lm(wage~college + female + college*female,
     data=CPS1985)
t(reg interact$coefficients)
```

```
(Intercept) college female college:female [1,] 9.093955 3.773582 -2.160816 0.2913502
```

```
#Le coefficient sur le terme college*female est la
# différence entre le salaire moyen des femmes diplômées
# et non-diplômées, moins la différence entre le
# salaire moyen des hommes diplômés et non-diplômés
all.equal(
  as.numeric(reg_interact$coefficients["college:female"]),
  (mean(CPS1985[gender=="female"
                & college==1]$wage)-
     mean(CPS1985[gender=="female"
                  & college==0]$wage))-
    (mean(CPS1985[gender=="male"
                  & college==1]$wage)-
       mean(CPS1985[gender=="male"
                    & college==0]$wage)))
```

Construire la régression multiple à partir de régressions simples

Comment calculer le coefficient sur education dans la régression multiple suivante, en n'utilisant que des régressions simples?

```
regression_multiple <-
  lm(wage ~ education + experience,
     data = CPS1985)

regression_multiple$coefficients</pre>
```

```
(Intercept) education experience -4.9044823 0.9259646 0.1051316
```

Construire la régression multiple à partir de régressions simples

- ▶ Théorème de Frisch-Waugh-Lovell :
 - ► Régresser d'abord wage sur experience
 - Et education sur experience
 - Et finalement le résidu de la première régression sur celui de la seconde

Une petite vérification

```
regression1 <- lm(wage ~ experience,
                  data = CPS1985)
residu1 <- regression1$residuals
regression2 <- lm(education ~ experience,
                  data = CPS1985)
residu2 <- regression2$residu
regression_FWL <- lm(residu1 ~ residu2)</pre>
regression FWL$coefficients
```

(Intercept) residu2 7.815299e-16 9.259646e-01

Une petite vérification

```
all.equal(
   as.numeric(regression_multiple$coefficients["education"])
   as.numeric(regression_FWL$coefficients["residu2"]))
```

Une conséquence intéressante

4.6657110

Comment interpréter le coefficient sur female dans la régression suivante?

```
regression_gender_occ <-
lm(wage ~ female + occupation,
    data = CPS1985)

regression_gender_occ$coefficients</pre>
```

```
(Intercept) female occupationtechnology (Intercept) 8.8203894 -2.0483583 4.1414 occupationservices occupationoffice occupations -1.0736478 0.2070872 -0.3113 occupationmanagement
```

Une conséquence intéressante

- C'est une moyenne sur toutes les professions (occupation) de l'écart de salaire moyen entre femmes et hommes spécifique à chaque profession
- Avec des poids proportionnels à :
 - La part de chaque profession dans l'emploi salarié
 - Un terme nul dans les professions exclusivement masculines ou exclusivement féminines, et maximal dans celles avec 50% de chaque sexe
 - C'est la variance conditionnelle de female : $\mathcal{V}(\texttt{female} \mid \texttt{occupation}) = \mathbb{E}[\texttt{female} \mid \texttt{occupation}]$ occupation] $\{1 \mathbb{E}[\texttt{female} \mid \texttt{occupation}]\}$

Une conséquence intéressante

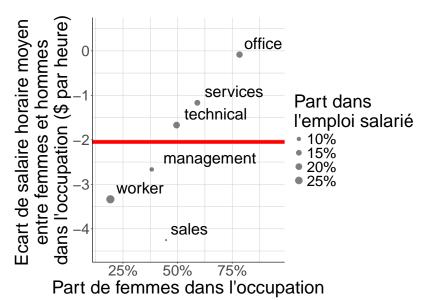
- Ce résultat vaut parce que l'on est saturé en occupation
 - Le résultat général vaut pour $Y=\alpha+\beta D+X'\gamma+\epsilon$ lorsque la régression linéaire de Y sur X s'identifie à l'espérance conditionnelle
 - C'est en particulier le cas si X correspond à une partition de la population par des variables indicatrices

```
ecarts_par_occ <-
  CPS1985[.
          list(ecart fh =
                 sum(wage * female) /
                 sum(female) -
                 sum(wage * (1 - female)) /
                 sum(1 - female),
               part_occ = .N,
               part f = mean(female),
               var_f = mean(female) *
                  (1 - mean(female))),
          by = c("occupation")]
```

[1] -2.048358

```
all.equal(
  as.numeric(regression_gender_occ$coefficients["female"])
  as.numeric(ecart_agrege_reg))
```

Une visualisation possible



Une généralisation dans le cas d'un régresseur continu

Comment interpréter le coefficient de education dans la régression suivante?

```
regression_educ_reg <-
lm(wage ~ education + region,
    data = CPS1985)

regression_educ_reg$coefficients</pre>
```

```
(Intercept) education regionother -1.1393605 0.7258807 1.0077941
```

Une généralisation dans le cas d'un régresseur continu

- C'est la moyenne des coefficients sur education dans une série de régressions simples effectuées dans chaque groupe défini par region
- Avec des poids proportionnels à :
 - La taille de chaque groupe dans l'emploi salarié
 - La variance de education dans chaque groupe
- Même remarque que précédemment, ça marche ici parce que l'on est saturé en region

Une petite vérification...

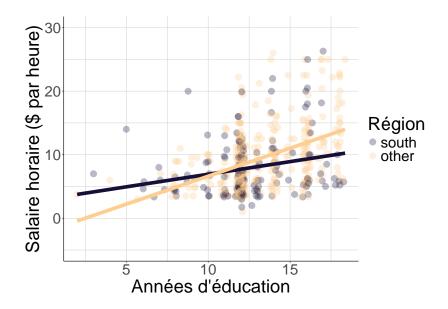
```
regressions_reg <-
  CPS1985[,
          unlist(lapply(X = .SD,
                 FUN = function(variable)
                   list(coeff =
                           cov(variable, wage) /
                           var(variable),
                         variance =
                           var(variable) *
                           (.N - 1) / .N.
                         part =
                           .N)),
                 recursive = FALSE),
          .SDcols = "education",
          by = c("region")]
```

[1] 0.7258807

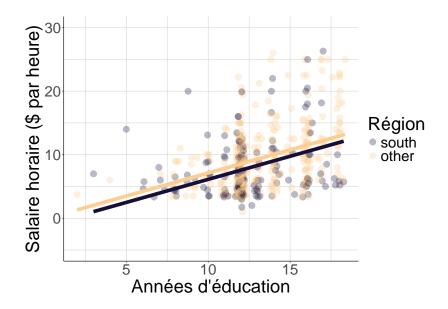
Une petite vérification...

```
all.equal(
   as.numeric(regression_educ_reg$coefficients["education"])
   as.numeric(regression_agreg))
```

Une tentative de visualisation



Une tentative de visualisation



- Comme dans le cas unidimensionnel on a $\mathcal{V}(\mathtt{wage}) = \mathcal{V}(\widehat{\mathtt{wage}}) + \mathcal{V}(\epsilon)$
 - ▶ Théorème de Pythagore
- On peut donc définir le coefficient de détermination $R^2 = \frac{\mathcal{V}(\widehat{\text{wage}})}{\mathcal{V}(\text{wage})}$
 - ▶ Valeurs comprises entre 0 et 1
- Part de la variance de wage que l'on peut expliquer par une combinaison linéaire des régresseurs
 - Là encore aucune raison de donner un sens causal à ce concept d'explication!

Comment se compare le coefficient de détermination dans le cas de la régression de wage sur education à celui dans le cas de la régression de wage sur education et experience?

- Le sous-espace des combinaisons linéaires de 1 et education est inclus dans le sous-espace des combinaisons linéaires de 1, education et experience
 - lacksquare II suffit de les écrire eta_1+eta_2 education + 0 \cdot experience
- Donc la meilleure approximation de wage par dans le premier ne peut jamais être strictement meilleure que la meilleure approximation dans le second
 - Au mieux ce sont les mêmes
- ▶ Le coefficient de détermination croît avec l'inclusion de régresseurs additionnels
 - Attention : ce n'est pas dire qu'il croît avec le *nombre* de régresseurs

- Comme dans le cas unidimensionnel, le coefficient de détermination mesure la "qualité" des valeurs prédites par la régression
- Ce n'est pas la qualité des coefficients!
 - Ne dit rien sur la précision avec laquelle ils sont estimés
 - Intuitivement la précision dépend de la taille d'échantillon, alors que le coefficient de détermination est une quantité relative à la population!
 - Ne dit rien de l'interprétation causale / économique des coefficients
 - C'est une simple mesure de corrélation